Angebote zu "Heuristic" (11 Treffer)

Kategorien

Shops

Probability Approximations via the Poisson Clum...
117,49 € *
ggf. zzgl. Versand

Probability Approximations via the Poisson Clumping Heuristic ab 117.49 € als Taschenbuch: Softcover reprint of hardcover 1st ed. 1989. Aus dem Bereich: Bücher, Wissenschaft, Mathematik,

Anbieter: hugendubel
Stand: 08.08.2020
Zum Angebot
Probability Approximations via the Poisson Clum...
117,49 € *
ggf. zzgl. Versand

Probability Approximations via the Poisson Clumping Heuristic ab 117.49 EURO Softcover reprint of hardcover 1st ed. 1989

Anbieter: ebook.de
Stand: 08.08.2020
Zum Angebot
Functional Integration
388,00 CHF *
ggf. zzgl. Versand

The program of the Institute covered several aspects of functional integration -from a robust mathematical foundation to many applications, heuristic and rigorous, in mathematics, physics, and chemistry. It included analytic and numerical computational techniques. One of the goals was to encourage cross-fertilization between these various aspects and disciplines. The first week was focused on quantum and classical systems with a finite number of degrees of freedom; the second week on field theories. During the first week the basic course, given by P. Cartier, was a presentation of a recent rigorous approach to functional integration which does not resort to discretization, nor to analytic continuation. It provides a definition of functional integrals simpler and more powerful than the original ones. Could this approach accommodate the works presented by the other lecturers? Although much remains to be done before answering 'Yes,' there seems to be no major obstacle along the road. The other courses taught during the first week presented: a) a solid introduction to functional numerical techniques (A. Sokal) and their applications to functional integrals encountered in chemistry (N. Makri). b) integrals based on Poisson processes and their applications to wave propagation (S. K. Foong), in particular a wave-restorer or wave-designer algorithm yielding the initial wave profile when one can only observe its distortion through a dissipative medium. c) the formulation of a quantum equivalence principle (H. Kleinert) which. given the flat space theory, yields a well-defined quantum theory in spaces with curvature and torsion.

Anbieter: Orell Fuessli CH
Stand: 08.08.2020
Zum Angebot
Probability Approximations Via the Poisson Clum...
216,00 CHF *
ggf. zzgl. Versand

If you place a large number of points randomly in the unit square, what is the distribution of the radius of the largest circle containing no points? Of the smallest circle containing 4 points? Why do Brownian sample paths have local maxima but not points of increase, and how nearly do they have points of increase? Given two long strings of letters drawn i. i. d. from a finite alphabet, how long is the longest consecutive (resp. non-consecutive) substring appearing in both strings? If an imaginary particle performs a simple random walk on the vertices of a high-dimensional cube, how long does it take to visit every vertex? If a particle moves under the influence of a potential field and random perturbations of velocity, how long does it take to escape from a deep potential well? If cars on a freeway move with constant speed (random from car to car), what is the longest stretch of empty road you will see during a long journey? If you take a large i. i. d. sample from a 2-dimensional rotationally-invariant distribution, what is the maximum over all half-spaces of the deviation between the empirical and true distributions? These questions cover a wide cross-section of theoretical and applied probability. The common theme is that they all deal with maxima or min- ima, in some sense.

Anbieter: Orell Fuessli CH
Stand: 08.08.2020
Zum Angebot
Functional Integration
317,00 CHF *
ggf. zzgl. Versand

The program of the Institute covered several aspects of functional integration -from a robust mathematical foundation to many applications, heuristic and rigorous, in mathematics, physics, and chemistry. It included analytic and numerical computational techniques. One of the goals was to encourage cross-fertilization between these various aspects and disciplines. The first week was focused on quantum and classical systems with a finite number of degrees of freedom; the second week on field theories. During the first week the basic course, given by P. Cartier, was a presentation of a recent rigorous approach to functional integration which does not resort to discretization, nor to analytic continuation. It provides a definition of functional integrals simpler and more powerful than the original ones. Could this approach accommodate the works presented by the other lecturers? Although much remains to be done before answering 'Yes,' there seems to be no major obstacle along the road. The other courses taught during the first week presented: a) a solid introduction to functional numerical techniques (A. Sokal) and their applications to functional integrals encountered in chemistry (N. Makri). b) integrals based on Poisson processes and their applications to wave propagation (S. K. Foong), in particular a wave-restorer or wave-designer algorithm yielding the initial wave profile when one can only observe its distortion through a dissipative medium. c) the formulation of a quantum equivalence principle (H. Kleinert) which. given the flat space theory, yields a well-defined quantum theory in spaces with curvature and torsion.

Anbieter: Orell Fuessli CH
Stand: 08.08.2020
Zum Angebot
Probability Approximations via the Poisson Clum...
113,99 € *
ggf. zzgl. Versand

If you place a large number of points randomly in the unit square, what is the distribution of the radius of the largest circle containing no points? Of the smallest circle containing 4 points? Why do Brownian sample paths have local maxima but not points of increase, and how nearly do they have points of increase? Given two long strings of letters drawn i. i. d. from a finite alphabet, how long is the longest consecutive (resp. non-consecutive) substring appearing in both strings? If an imaginary particle performs a simple random walk on the vertices of a high-dimensional cube, how long does it take to visit every vertex? If a particle moves under the influence of a potential field and random perturbations of velocity, how long does it take to escape from a deep potential well? If cars on a freeway move with constant speed (random from car to car), what is the longest stretch of empty road you will see during a long journey? If you take a large i. i. d. sample from a 2-dimensional rotationally-invariant distribution, what is the maximum over all half-spaces of the deviation between the empirical and true distributions? These questions cover a wide cross-section of theoretical and applied probability. The common theme is that they all deal with maxima or min ima, in some sense.

Anbieter: Thalia AT
Stand: 08.08.2020
Zum Angebot
Functional Integration
227,99 € *
ggf. zzgl. Versand

The program of the Institute covered several aspects of functional integration -from a robust mathematical foundation to many applications, heuristic and rigorous, in mathematics, physics, and chemistry. It included analytic and numerical computational techniques. One of the goals was to encourage cross-fertilization between these various aspects and disciplines. The first week was focused on quantum and classical systems with a finite number of degrees of freedom; the second week on field theories. During the first week the basic course, given by P. Cartier, was a presentation of a recent rigorous approach to functional integration which does not resort to discretization, nor to analytic continuation. It provides a definition of functional integrals simpler and more powerful than the original ones. Could this approach accommodate the works presented by the other lecturers? Although much remains to be done before answering 'Yes,' there seems to be no major obstacle along the road. The other courses taught during the first week presented: a) a solid introduction to functional numerical techniques (A. Sokal) and their applications to functional integrals encountered in chemistry (N. Makri). b) integrals based on Poisson processes and their applications to wave propagation (S. K. Foong), in particular a wave-restorer or wave-designer algorithm yielding the initial wave profile when one can only observe its distortion through a dissipative medium. c) the formulation of a quantum equivalence principle (H. Kleinert) which. given the flat space theory, yields a well-defined quantum theory in spaces with curvature and torsion.

Anbieter: Thalia AT
Stand: 08.08.2020
Zum Angebot
Probability Approximations Via the Poisson Clum...
154,99 € *
ggf. zzgl. Versand

If you place a large number of points randomly in the unit square, what is the distribution of the radius of the largest circle containing no points? Of the smallest circle containing 4 points? Why do Brownian sample paths have local maxima but not points of increase, and how nearly do they have points of increase? Given two long strings of letters drawn i. i. d. from a finite alphabet, how long is the longest consecutive (resp. non-consecutive) substring appearing in both strings? If an imaginary particle performs a simple random walk on the vertices of a high-dimensional cube, how long does it take to visit every vertex? If a particle moves under the influence of a potential field and random perturbations of velocity, how long does it take to escape from a deep potential well? If cars on a freeway move with constant speed (random from car to car), what is the longest stretch of empty road you will see during a long journey? If you take a large i. i. d. sample from a 2-dimensional rotationally-invariant distribution, what is the maximum over all half-spaces of the deviation between the empirical and true distributions? These questions cover a wide cross-section of theoretical and applied probability. The common theme is that they all deal with maxima or min- ima, in some sense.

Anbieter: Thalia AT
Stand: 08.08.2020
Zum Angebot
Functional Integration
186,99 € *
ggf. zzgl. Versand

The program of the Institute covered several aspects of functional integration -from a robust mathematical foundation to many applications, heuristic and rigorous, in mathematics, physics, and chemistry. It included analytic and numerical computational techniques. One of the goals was to encourage cross-fertilization between these various aspects and disciplines. The first week was focused on quantum and classical systems with a finite number of degrees of freedom; the second week on field theories. During the first week the basic course, given by P. Cartier, was a presentation of a recent rigorous approach to functional integration which does not resort to discretization, nor to analytic continuation. It provides a definition of functional integrals simpler and more powerful than the original ones. Could this approach accommodate the works presented by the other lecturers? Although much remains to be done before answering 'Yes,' there seems to be no major obstacle along the road. The other courses taught during the first week presented: a) a solid introduction to functional numerical techniques (A. Sokal) and their applications to functional integrals encountered in chemistry (N. Makri). b) integrals based on Poisson processes and their applications to wave propagation (S. K. Foong), in particular a wave-restorer or wave-designer algorithm yielding the initial wave profile when one can only observe its distortion through a dissipative medium. c) the formulation of a quantum equivalence principle (H. Kleinert) which. given the flat space theory, yields a well-defined quantum theory in spaces with curvature and torsion.

Anbieter: Thalia AT
Stand: 08.08.2020
Zum Angebot